tangles.separations.finding =========================== .. currentmodule:: tangles.separations.finding .. automodule:: tangles.separations.finding .. rubric:: Classes .. toctree:: :hidden: tangles.separations.finding.OrderFuncDerivative .. list-table:: :widths: 50 50 * - :class:`OrderFuncDerivative` - Abstract Base Class for use with the minimize cut method .. rubric:: Functions .. toctree:: :hidden: tangles.separations.finding.add_all_corners_of_features tangles.separations.finding.min_S_T_cut tangles.separations.finding.minimize_cut tangles.separations.finding.nodal_domains tangles.separations.finding.pca_features tangles.separations.finding.random_features tangles.separations.finding.spectral_features tangles.separations.finding.spectral_features_splitted .. list-table:: :widths: 50 50 * - :func:`add_all_corners_of_features` - Calculates the four corners of every pair of features from an input array * - :func:`min_S_T_cut` - Search a minimal weight `S`-`T`-cut in the graph with adjacency matrix `A` * - :func:`minimize_cut` - Find a locally minimal cut in a graph starting with the cut specified by `starting_feature` * - :func:`nodal_domains` - Calculate the nodal domains of a function from the vertices of the graph with adjacency matrix `A` to the real numbers * - :func:`pca_features` - Generate features using a method inspired by Principal Component Analysis (PCA) * - :func:`random_features` - Generates an array of features randomly * - :func:`spectral_features` - Compute spectral bipartitions directly by computing eigenvectors of the complete graph * - :func:`spectral_features_splitted` - Compute spectral bipartitions of a graph after splitting into connected components