guess_variable_value_lists#

Survey.guess_variable_value_lists(column_selection: str | int | list | ~numpy.ndarray | ~pandas.core.series.Series | range | ~typing.Callable[[~tangles.convenience.survey_variable.SurveyVariable], bool] | None = None, invalid_value_range: ~tangles.convenience.survey_variable.UnionOfIntervals | None = <tangles.convenience.survey_variable.UnionOfIntervals object>, mark_added_labels: bool = True, overwrite_existing_information: bool = False, keep_existing_labels=True, suppress_check_var_warning: bool = True)#

Guess missing variable value lists from data.

Parameters#

column_selectionstr, int, list, np.ndarray, pd.Series, range, QuestionSelector or None

If None, all columns are taken into account. Otherwise, a subset will be considered. The parameter is interpreted as described in Survey.interpret_column_selection().

invalid_value_rangeSurveyVariable.UnionOfIntervals

Values inside this interval are considered to be missing values. Often this is UnionOfIntervals(-np.inf, 0, False, True).

mark_added_labelsbool

If True, all labels inserted automatically are marked by appending the string ‘(*)’.

overwrite_existing_informationbool

Overwrite value range information that is already present.

keep_existing_labelsbool

Keep known labels, even if the value range information is overwritten.

suppress_check_var_warningbool

If True, don’t show a warning if there are ‘unusable’ variables. A variable is unusable, if we can not automatically create features for the corresponding question.